1 A cup of water is cooling. Its initial temperature is $100^{\circ} \mathrm{C}$. After 3 minutes, its temperature is $80^{\circ} \mathrm{C}$.
(i) Given that $T=25+a \mathrm{e}^{-k t}$, where T is the temperature in ${ }^{\circ} \mathrm{C}, t$ is the time in minutes and a and k are constants, find the values of a and k.
(ii) What is the temperature of the water
(A) after 5 minutes,
(B) in the long term?

2 A population is P million at time t years. P is modelled by the equation

$$
P=5+a \mathrm{e}^{-b t}
$$

where a and b are constants.
The population is initially 8 million, and declines to 6 million after 1 year.
(i) Use this information to calculate the values of a and b, giving b correct to 3 significant figures.
(ii) What is the long-term population predicted by the model?

3 (i) Express $2 \ln x+\ln 3$ as a single logarithm.
(ii) Hence, given that x satisfies the equation

$$
\begin{equation*}
2 \ln x+\ln 3=\ln (5 x+2) \tag{2}
\end{equation*}
$$

show that x is a root of the quadratic equation $3 x^{2}-5 x-2=0$.
(iii) Solve this quadratic equation, explaining why only one root is a valid solution of

$$
\begin{equation*}
2 \ln x+\ln 3=\ln (5 x+2) \tag{3}
\end{equation*}
$$

4 The mass $M \mathrm{~kg}$ of a radioactive material is modelled by the equation

$$
M=M_{0} \mathrm{e}^{-k t}
$$

where M_{0} is the initial mass, t is the time in years, and k is a constant which measures the rate of radioactive decay.
(i) Sketch the graph of M against t.
(ii) For Carbon $14, k=0.000121$. Verify that after 5730 years the mass M has reduced to approximately half the initial mass.

The half-life of a radioactive material is the time taken for its mass to reduce to exactly half the initial mass.
(iii) Show that, in general, the half-life T is given by $T=\frac{\ln 2}{k}$.
(iv) Hence find the half-life of Plutonium 239, given that for this material $k=2.88 \times 10^{-5}$.

5 The temperature $T^{\circ} \mathrm{C}$ of a liquid at time t minutes is given by the equation

$$
T=30+20 \mathrm{e}^{-0.05 t}, \quad \text { for } t \geqslant 0
$$

Write down the initial temperature of the liquid, and find the initial rate of change of temperature.
Find the time at which the temperature is $40^{\circ} \mathrm{C}$.

6 Fig. 8 shows a sketch of part of the curve $y=x \sin 2 x$, where x is in radians.
The curve crosses the x-axis at the point P . The tangent to the curve at P crosses the y-axis at Q .

Fig. 8
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$. Hence show that the x-coordinates of the turning points of the curve satisfy the equation $\tan 2 x+2 x=0$.
(ii) Find, in terms of π, the x-coordinate of the point P .

Show that the tangent PQ has equation $2 \pi x+2 y=\pi^{2}$.
Find the exact coordinates of Q .
(iii) Show that the exact value of the area shaded in Fig. 8 is $\frac{1}{8} \pi\left(\pi^{2}-2\right)$.

